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Abstract. Backward difference methods for the discretization of parabolic boundary 
value problems are considered in this paper. In particular, we analyze the case when 
the backward difference equations are only solved 'approximately' by a preconditioned 
iteration. We provide an analysis which shows that these methods remain stable and 
accurate if a suitable number of iterations (often independent of the spatial discretization 
and time step size) are used. Results are provided for the smooth as well as non- 
smooth initial data cases. Finally, the results of numerical experiments illustrating the 
algorithms' performance on model problems are given. 

1. Introduction. In this paper, we shall study implicit multistep backward 
difference methods for linear parabolic equations. In particular, we shall focus on 
generalizations which involve the application of iterative procedures to the resulting 
algebraic systems. We will provide results which justify the use of incomplete 
iteration in a way that will not affect the error estimates for the discretization. 
Thus, the time stepping scheme with incomplete iteration will achieve the same 
order of convergence as the original scheme (solving the implicit equations exactly 
at each time step). These results will be given for problems with smooth as well as 
nonsmooth solutions. 

In general, we only assume that the iterative procedure leads to a reduction 
in an appropriate energy norm. Typical examples can be developed by applying 
the preconditioned conjugate gradient method with an appropriate preconditioner. 
Some examples of preconditioners and their analyses can be found in [3]-[9], [13], 
[17], [25] and the references cited in [13]. 

Our results show that the error in the numerical methods has the same asymp- 
totic behavior even when an appropriate number of iterations (often only a fixed 
number independent of the spatial mesh and time step size) are used at each time 
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step. The procedure studied thus reduces the work involved in the actual compu- 
tation in a significant way. This is illustrated both in our theoretical and compu- 
tational results. 

In Section 2 we review the error estimates for stable backward difference meth- 
ods in the case that the solution is smooth, and under the assumption that the 
difference equations are solved exactly at each time step. Since our emphasis is 
on the discretization in time, we shall start by considering an abstract evolution 
equation in a Hilbert space setting, where a selfadjoint positive definite operator 
plays the role of the elliptic operator in the parabolic equation. We shall then apply 
the analysis to the case of a partial differential equation in space and time. 

Sections 3 and 4 provide an analysis for the backward difference algorithms 
using incomplete iteration. In Section 3 we consider algorithms applied to a partial 
differential equation in space and time with a smooth solution. In Section 4 we 
study the case of a homogeneous equation with nonsmooth initial data. 

The proofs of our results given in Sections 3 and 4 are based on certain a priori 
estimates for the solution of the backward difference equation (without iteration). 
These estimates are proved in Section 5. 

In Section 6 we provide the results of numerical experiments illustrating the 
theory developed in this paper. We also provide additional details concerning pre- 
conditioning and the starting procedure. 

Error estimates for semidiscrete in space and completely discrete single step 
methods applied to parabolic problems for both smooth and nonsmooth solutions 
have been derived by many authors, cf. Thomee [241 and references therein. Multi- 
step methods have been studied similarly by Zlamal [26] and Crouzeix and Raviart 
[14], for smooth, and by Le Roux [21] for nonsmooth solutions. 

The idea of incomplete iterations was first analyzed for parabolic problems in 
Douglas, Dupont and Ewing [16] and Bramble and Sammon [10] (cf. also Bramble 
[2], Keeling [20]), in the context of single step schemes and under the assumption 
that the exact solution is smooth. 

2. The Basic Backward Difference Method. In this preliminary section, 
we shall give error and stability estimates for the basic backward difference approx- 
imation to parabolic problems with smooth solutions. We first study the abstract 
parabolic equation in Hilbert space and then turn to the concrete situation of a 
parabolic partial differential equation in space and time. In this section, we assume 
that the equations resulting from the backward difference time discretization will 
be solved exactly at each time level. 

We start with the abstract parabolic equation on a separable Hilbert space H 
given by 

ut+JVu=f for 0<t<T 
(2.1) u0 

u(O) = v, 

where V is a selfadjoint, positive definite, not necessarily bounded operator on H 
with dense domain of definition .(), and f is a function of t with values in H. 

We shall study the numerical approximation to (2.1) by a q-step backward dif- 
ference method. Let k denote the time step size and tn = nk. For given starting 
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values {iU E H, i = O... ., q - 1}, define the sequence of functions {iU E H} by 
the difference equations 

q k - 
(2.2) 

E 
. OU' +.Un='fi for n > q, 

j=1 

where OtUl = (U, - Un-1)/k and fn = f(tn). It is a straightforward conse- 
quence of the Spectral Theorem that the sequence {Un} is well defined and can be 
computed by a marching algorithm. Un is an approximation to Un = u(tn) when 
appropriate starting values are used. Equation (2.2) can be rearranged in the form 

q 
(2.3) LkUn_ k= 1 ZaUn-j +s.Un = fn for n > q. 

j=O 

In order for Un to be an accurate approximation to un, appropriate values of UJ, 
j = O,. . . , q - 1, must be defined by a separate starting procedure. For accuracy, 
these values of UW should approximate u' for i = 0, . .. , q - 1 to order q. 

Note that method (2.2) is accurate of order q. This can be seen as follows. The 
Newton backward difference formula (cf. [19]) is given by 

U(t) = Un+(t-tn)tn + 
- (t - tn)(t - tn-i) 2 n ut=u + (t - tn)'9tu' + 2! 

(2.4) + + (t - tn) ... (t - tn-q+l) aqun 

+(t - tn) ... (t -tn-q)U(q+1) 

+ (q + 1)! 

Here, U(q+ 1) (s) is the q + 1'st derivative of u evaluated somewhere in the interval 
[tnq, tn]. Applying (2.4) to a polynomial P of degree q and differentiating shows 
that 

q k- I = aP(tn) 
Z at 

and hence it follows immediately from Taylor's Theorem that (2.2) is accurate of 
order q. 

For q = 1, (2.2) reduces to the backward Euler method 

(2.5) Un - un-l1 + Un = fn for n > 1, 
k 

and only the starting value UO = v is needed. For q = 2, (2.2) takes the form 

(3Un - 2Un-1 + 1Un-2) /k +Un = fn for n > 2. 

In this case, natural choices for U0 and U1 are 

U0 = V 

and 
(U1 -U0)/k +.U1 = fX. 

Note that U1 is determined by taking one step of the backward Euler method (2.5). 



342 JAMES H. BRAMBLE ET AL. 

For q > 2, starting values can be generated by using the partial sums of the 
Taylor expansion of u(tj), i.e., 

q-1 (jk)1 
(2.6) Ui = il)D'u(0) for j = O1.... Iq - 

1=0 

Here the function D'u(O) can be computed from the differential equation in terms 
of data, i.e., 

(2.7) Dtu(O) = f (O)- , 
D 2u(O) = ft(O)-A?(f(O)-Au(0)), etc. 

This choice is only appropriate for the smooth data case. Starting values for the 
nonsmooth data case will be discussed later. 

It is well known from the theory for the numerical solution of ordinary differential 
equations (cf., e.g., Gear [18, p. 214], Cryer [15]) that the backward difference 
method employed in (2.2) is A(O)-stable for q < 6. As a result of this stability, we 
can prove the following theorem. 

THEOREM 2.1. For q < 6, let U' and u be the solution of (2.2) and (2.1) 
respectively. Assume that the starting values {Ui} satisfy 

IIUi - ui|I < C(u)kq for j = O... ,q-1. 

Then, provided that u is sufficiently smooth, 

IIUn - unIl < C(u)kq for n > q and tn < T. 

To prove the theorem, we shall use scales of spaces induced by the operator A. 
Note that the powers of the operator W are well defined in terms of its spectral 
decomposition. We define Hs to be the domain of V,/2. Then Hs is a Hilbert 
space with norm given by 

IlviL = vl/ 
A major ingredient in the proof of the above theorem, as well as those to be 

stated later, is the following fundamental a priori inequality. 

LEMMA 1. Let q < 6 and p > 0. Let {Un} be the solution of (2.2) and n be 
greater than or equal to q. Then 

n n 
tp lUnI12 + k tjP IIUiII| < Ck Z(tP IIf|II21 + IIf|II2-l) 

j=q j=q 

q-1 

+ c E(IIUI 112 + kP lIuII2). 
j=O 

This lemma will be proved in Section 5. Its generality was introduced for later 
use. We next prove Theorem 2.1, assuming the lemma. 

Proof of Theorem 2.1. Let en = un U Un. Then 

(2.8) Lken =,rn 

where rn is the truncation error in the discretization of the time derivative, i.e., 
q 

(2.9) T = k U -i _ u . 
j=o 
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Applying Lemma 1 with p = 0 to {e-} gives 
n q-1 

(2.10) lien112 ? Ck E: + q E 
2 

112 

j=q j=O 
By (2.4), 

k-1 E aP(tn-j )- (t) - 0 
j=O 

holds for polynomials P of degree less than or equal to q. Hence, Taylor's formula 
implies that 

(2.11) T= k-1 Zc'j~(tn-j) - a(t) 
j=O 

where 
1 t 

f = -, '| (t -_s)qDq+lu(s) ds. 
n-q 

Hence, if u is smooth enough 

1IK'II_l C(u)kq, 
and (2.10) implies the theorem. 

We shall now show how Lemma 1 can be used to appraise the error in the 
numerical solution of a parabolic partial differential equation in space and time. 
The time stepping procedure will be applied to an equation which has first been 
discretized in the space variables. 

We consider the initial boundary value problem 

ut + Au = f inQ O <t<T, 

(2.12) u = 0 onaQ, O<t<T, 

u(.,0) = v(.) in Q, 
where o is a bounded domain in Rd with smooth boundary and A is the second- 
order selfadjoint elliptic operator given by 

Au = - d )i )aij W adj + ao(x)u. 
i,j=1 

Here we assume that the coefficients defining A are smooth, ao(x) > 0 and {aij(x)} 
is uniformly positive definite. 

Let H8(') denote the usual Sobolev space of order s defined on Q (cf. [22]). Let 
the scales of spaces {H8} be defined as previously discussed with H = L2 (Q) and 
v replaced by A. It was shown in [12] that for nonnegative integers s, 

H9 = {q E H8(Q)IAjk = 0 on aQ for j < s/2}. 

In particular, H1 Ho' (), the space of functions in H1(Q) whose trace vanishes 
in the appropriate sense on aQ. 

Let r be an integer greater than one. Assume that we are given a family of 
finite-dimensional approximation spaces Sh C Ho (Q) with the property 

inf (i1V - XIL2 (Q) + h liv - XIIH1(Q)) < Ch8 IIVIIHB(Q) for 1 < s < r. 
xESh 
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Define the discrete operator Ah: Sh - Sh by 

(AhV, X) = A(v, X) for all X E Sh, 

where (,) denotes the inner product in L2(2) and A(.,.) is the bilinear form 
corresponding to A. Clearly, Ah is a symmetric positive definite operator on Sh. 

Let Ph denote the L2(Q) orthogonal projection operator onto Sh and consider 
the semidiscrete problem 

(2.13) Uht + AhUh = Phf for t > 0, 

Uh(0) = Vh. 

Equation (2.13) is of the same form as (2.1), and hence we can apply the time 
discretization method discussed earlier to define a fully discrete approximation to 
the solution u of (2.12). Thus, we define the sequence of functions {Un E Sh} by 
replacing W by Ah in (2.2). 

Remark 2.1. In terms of forms, (2.13) is equivalent to 

(Uh,t, X) + A(uh, X) = (f, X) for all X E Sh and t > 0, 

Uh(0) = Vh. 

Similarly, {Un} is the sequence of functions satisfying 

/ qA 

(k-1E ajUn-ij X + A(UnX) = (fx) for all XE Sh and n > q. 
V j=o 

We will next prove the following theorem. 

THEOREM 2.2. For q < 6 let Un be the solution of (2.2) with a = Ah and u 
be the solution of (2.12). Assume that the starting values {Ui} satisfy 

(2.14) || Ui - ui || < C(u) (hr + kq) for i = O.., q -1. 

Then, provided that u is sufficiently smooth, 

(2.15) IU n - unII < C(u)(hr + kq) for n > q and tn < T. 

Proof. For the purpose of proof, we introduce the Ritz projection Rh: Ho (0) - 

Sh defined by 
A(RhV, X) = A(V, X) for all X E Sh 

and write the error 

(2.16) U -ui = (U' - Rhut) + (Rhu'-u') =- O + pi for i > 0. 

By standard error estimates for the Ritz projection, 

(2.17) 11pn11 < Chr llUn 11HI(Q) < C(u)h r. 

Thus it suffices to consider the remaining part on, which is in Sh. From the def- 
initions, it is easily checked that AhRh = PhA, on the domain of A, hence on 
satisfies 

q 

(2.18) k 1Zcajon-i + Ahon = an _ (Ph -Rh)Un + Rh7n for n > q, 
j=O 

where rn is the truncation error given by (2.9). 
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By Lemma 1 applied (with p = 0) to O', 

n q-1 

IonII2 < Ck EU 11 II2 + C E 11j 12, 
j=q j=0 

where LII l-j,h denotes the discrete norm defined by 

IIxIKj,_ = (Ah jXX)1/2 

Clearly, for sufficiently smooth u, 

(2.19) IIaj0-I 1,h < C Ioaj I < C(u)(h + 0k). 

Note that by the triangle inequality, (2.14) and (2.17), 

(2.20) 110il|| < C(u)(hr + kq) for j = q.... q- 

and hence 

(2.21) 1O11| < C(u)(hr + kg). 

The theorem follows combining (2.17) and (2.21). 
An appropriate choice of starting values would be (cf. (2.6)) 

(2.22) Uj = Rh Du(O) forj = 0,... , q- 1, 
j=0 

where the Dlu(O) are computed from the differential equation in terms of data as 
in (2.7). 

3. Incomplete Iteration. In Section 2 we considered algorithms which re- 
quired the exact solution of the backward difference equations at each time step. 
In this section, we consider the extension of such algorithms to the case where the 
backward difference equations are only 'approximately' solved. We shall limit our 
discussion here to approximation of smooth solutions of (2.12) and consider the 
case of nonsmooth initial data in the following section. Moreover, we shall only 
consider the case where the backward difference is applied to the equation wl ich 
has already been discretized in space (2.13). The incomplete iterative technique has 
important computational advantages in applications where efficient preconditioners 
are available. 

As already indicated, the incomplete iteration backward difference algorithm 
is defined by only approximately solving the time step equations. Again, we are 
to define a sequence of functions {U'} C Sh. Given un-1,... , Un-q, we use an 
iterative process to approximate the solution Un of 

q 

(3.1) (ao + kA)Un = kfn - ajUn-j. 
j=l 

We assume that the iterative process uses a starting guess Un'0 (which we are to 
provide) and gives rise to a sequence of iterates Un,m converging to the solution Un 
of (3.1) as m tends to infinity. The incomplete iteration algorithm is then defined 
by setting Un = Un,M(n) for some integer M(n) which may vary with n and is to 
be specified. 



346 JAMES H. BRAMBLE ET AL. 

In addition to the number M(n), we have to define U'0? in order to make our 
procedure precise. For the purpose of accuracy, we shall need Un,? to be a q + 1'st 
order approximation to Un. The q + 1'st order extrapolation approximating un in 
terms of Un-1 , un-q-1 is defined from 

U -E ( + ) (-1)1Un1 + 0(kq+l). 

Hence we define 

(3.2) Un,O = + (_-)Un-1. 

Since (3.2) may be used only for n > q + 1, we define Uq equal to Uq. 
Remark 3.1. As will be demonstrated by the theory, it is possible to choose M(n) 

a priori so that the incomplete iteration scheme is stable and convergent. However, 
this choice of M(n) involves a priori constants which are not explicitly available 
in practice. Nevertheless, numerical examples given in Section 6 indicate that 
the threshold values of M(n) necessary for stability are rather low. These results 
suggest that the incomplete iteration technique can be used to develop robust time 
stepping algorithms. 

To study the stability and convergence properties of the above method, we must 
make some additional assumptions on the iterative procedure. We assume that 
there exist positive constants co and Kc < 1 such that 

(3.3) IIIU n III _ co, cIII Uo'0n, - Un III for j = 1, 2,... 

where 

Ilivill_ (11v12 + k(Ahv, v))1/2 = (11v112 + kA(v, v))1/2. 

Estimates of the form of (3.3) are rather typical in the theory of preconditioned 
iterative methods. Values of rc are generally related to the condition number of 
the preconditioned system. As an example, the case of preconditioned conjugate 
gradient iteration will be discussed in Section 6. 

The next theorem gives an error estimate for the incomplete iteration backward 
difference method described above, applied to the semidiscrete equation (2.13). 

THEOREM 3.1. Let q < 6 and u be the solution of (2.12). Further, let Uq = Uq 
and Un for n > q be defined by incomplete iteration for the solution of (3.1) as 
described above. Assume that the starting values {Ui} have been chosen so that 

(3.4) IIIUi - RhujIII < C(u)(hr + kq) for j = 0, ... ., q - 1. 

Then, provided u is sufficiently smooth, there exists a positive constant 6 (independent 
of u) such that if M(n) is large enough so that 

(3.5) EM(n) < tl1/2 n 

then 

IIUn-unII C(u)(hr+kq) forn>q andtn ?T. 
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Proof. The result of the theorem for n = q is contained in Theorem 2.2. We 
thus only consider n > q. Let E be a small positive constant which will be defined 
later in the proof. By the triangle inequality and (3.3), 

IIIUn _ UnIII < cOXvM(n)I(IIUn' _Un'II + IIIUn -Un 1) 

We choose 6 = 6(e) small enough so that 

(3.6) co~cM(n) 1/2 
(3-6) 

cor.1 ~0iM (n) - n 

Then 

(3.7) IIIU_ -Tnjn < Etl/21IUn -Un I. 

But (3.2) can be rewritten as 

Un - un,O = kq+l oq+l n 

and hence 

(3.8) IIIw nIII < Etl/2 kq IIIq+1UnIII for n > q + 1, 

where wn= (U n _ U)/k. 

We now proceed as in the proof of Theorem 2.2 and decompose the error as in 
(2.16), i.e., Un - = = n + pn. Once again, pn is bounded by (2.17) and we are 
left to estimate on. Note that the sequence On = -Rn-RhU, nd bn-j O=n- for 
j = 1, . . . , n - q satisfies (2.18). Hence 

(3.9) Lkt =o0 + (ao + kAh)wn, 

and thus Lemma 1 (with p = 0) yields 

n q-1 

110nh12 < CkZ, Ilo + (ao + kAh)Wj II12h + S 11011. 
j=q j=O 

By (2.19), we clearly have 

(3.10) 11ori + (ao + kAh)WjIIl1 h < C(u)(hr + kq) + C011wj I1I. 

Thus, (2.20) and the fact that Wq = 0 give 
n 

(3.11) II0n11I2 < C(u)(hr + kq)2 + Ck E IIIwjIII2. 
j=q+l 

From (3.8) and the triangle inequality, 

IIIwnIII < Et112 kq (IIaq+l nII1 + IIIRh q+u1uIII). 

Now Rh is bounded in the H1 (Q) norm and clearly, the norm III is bounded by 
the H1 (Q) norm and hence 

&|| +1U nIII < IIatq+1UnII1 

But at'1 annihilates polynomials up to degree q, and hence by Taylor's formula 

II1+1UnII1 < C| &+ (t - S)qDq+lu(s)ds) < C(u). 
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Thus 

C, 
q 

(3.12) IIIwn II < etJ12 L Illaton- III + C(u)kq for n > q. 
j=O 

Hence 
n 

(3.13) IlQn I2 < C(u)(hr + kq)2 + Ce2k E tjIllatOjIII2. 
j=1 

We now need an estimate for the last term in (3.13). We introduce the following 
estimate for the original time stepping scheme in the Hilbert space framework. In 
this estimate, the norm is defined in terms of V. Moreover, we define the 
norms 11I*,. by 

IIIVIII*,s = (I + k)-1/2Qf/2 

When s = 0, we denote the above norm by 1 III* 

LEMMA 2. Let q < 6 and p > 0. Let {Un} be the solution of (2.2) and n be 
greater than or equal to q. Then 

n n 

k tjplllatUjIII2 ? CkZ(tjplllfjIII2 + IIIfjIII2,_p) 

j=q j=q 

q-1 
+ C E(IIIUjIII2_p+ + k- 1 IllUj I112). 

j=O 

The proof of Lemma 2 will be given in Section 5. We complete the proof of the 

theorem assuming the lemma. Applying the lemma with p = 1 to on satisfying 

(3.9) gives 

n n q-1 

k tjIIlatOj 1112 ? CkZ 111o2 + (ao + kAh)w III* + C 1 II10j 1112. 

j=q j=q j=O 

By (2.19), 

ilia' + (ceo + kAh)wJ3111* < C(u)(hr + kq) + C 
and thus 

n n 

(3.14) ktItjIlllatOill2 < C(u)(hr +kq)2 +Ck I IIIwjIII2. 
j=q j=q+1 

By (3.12), 

n n 

k E IIIWj III2 < Ce2k E tj IIIdto III2 + C(u)k2q 

(3.15) j=q+1 q-1 

< Ce2k Z tj Illatoj 1112 + Ck2 Z hIlat0j 1112 + C(u)k2q. 
j=q j=1 

By (3.4), 

(3.16) klllat0j1ll < C(lIIIjIII + 1110j-31ll) < C(u)(hr + kq) for j = 1,... ,q- 1. 
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Combining (3.14), (3.15) and (3.16) gives 
n n 

k E IIIJIII12 < Ce2k E IIIwiIII2 + C(u)(hT + kq)2. 

j=q+l j=q+l 

Taking E sufficiently small yields 
n 

(3.17) k Ej IIIwjiI12 < C(u)(hr + kq)2. 

j=q+1 

The theorem then follows combining (3.13), (3.14) and (3.17). 
To satisfy (3.5), a larger number of preconditioned iterations must be taken in 

the earlier time steps. The next corollary (of the proof of Theorem 3.1) shows that 
it is possible to iterate with a fixed (M(n) independent of n, k and h) number of 
preconditioned iterations if more accurate starting values are assumed. 

COROLLARY 3.1. Assume that the hypotheses of Theorem 3.1 hold with (3.4) 
replaced by 

(3.18) IIIU3 - RhujIII < C(u)kq+l/2 for j = O,... , q - 1 

and (3.5) replaced by M(n) > C. Then, provided that u is sufficiently smooth, 

H UfnunI < C(u)(hr +kq) forn > q andtn < T. 

Proof. We follow the proof of Theorem 3.1, replacing et'/2 by e. Inequality 
(3.12) is replaced by 

q 
IIIwnIII < CeZ EIIdto n-j III + C(u)kq for n > q. 

j=O 

Inequality (3.13) is replaced by 
n 

(3.19) 110n112 < C(u)(hr + kq)2 + CC2k Z II||t~III2. 
j=1 

Applying Lemma 2 with p = 0 to on, gives 
n n q-1 

k E 11at~iI112 < Ck E |I& + (ao + kAh)wAII 11h + Ck-1 E II>ajIII2. 
j=q j=q j=0 

For the second term above, we use the stronger assumption (3.18) and the argu- 
ments in the proof of Theorem 3.1 to derive (compare with (3.14)) 

n n 

kE III~t#9jI12 < C(u)(hr + kq)2 + Ck E IIIWjiiI2. 
j=q j=q+1 

The corollary then follows from the arguments after (3.14) and the above inequal- 
ities. 

Remark 3.2. The condition (3.18) can be satisfied by choosing, for example, 

U3 = RhZE Diu(O), j=O,... ,q-1, 
1=0 

i.e., by including one more term in the sum than in (2.22). 
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Remark 3.3. The condition Uq = Uq does not present additional difficulties in 
practice. We suggest using the preconditioned iterative scheme to solve for Uq up 
to computer roundoff accuracy. In general, this is of negligible computational cost 
compared to the work required for the remainder of the time stepping calculation. 

4. Incomplete Iterations: The Case of Nonsmooth Initial Data. We 
consider incomplete iteration applied to the case of nonsmooth initial data in this 
section. The first theorem gives a result for the Hilbert space case, i.e., the case 
when there is no spatial discretization. The second theorem considers the fully 
discrete situation. All of our results apply to the homogeneous equation, i.e., f = 0. 

For the Hilbert space case, it has been shown by spectral techniques, Le Roux 
[21], that under the appropriate assumptions about the choice of discrete initial 
data, the solution of (2.2) satisfies the error estimate 

(4.1) IIU n- l < CkqtI-q IviI for n > O. 

Moreover, for the fully discrete approximation (i.e., the solution of (2.2) with v = 

Ah), if Vh = Phv is used with the proper choice of the remaining starting values, 
then 

(4.2) IIU n-unII < C(kqt-q + hrtn-/2) lviI for n > O. 

In this section, we will generalize these results to the algorithms using incomplete 

iteration defined in Section 3. 
For nonsmooth data estimates, we shall require some stronger hypotheses for 

the starting values. Specifically, we shall assume that 

(4.3) IIU - ull2q,h + kqIIIUj- U3Ill < CkO lvII for j = 0,... ,q - 1. 

The development of starting values satisfying (4.3) will be discussed later. 

We now state the theorem in the Hilbert space case. 

THEOREM 4.1. Let q < 6 and u be the solution of (2.1). Assume that the 

starting values {UZ}, i = O, . . . q - 1, satisfy (4.3), U' = U and uq+l - 

Let Un for n > q + 1 be the approximation generated using incomplete iteration 

as described in Section 3. There exists a positive constant 6 such that, if M(n) is 

chosen satisfying 

(4.4) K;M(n) < btq+1/2 

then 

(4.5) IIUn - unII < Ck qt-q lIvII for n > 0 and tn < T. 

The assumption (4.4) requires more iterations at earlier time steps than in the 

smooth data case (see Theorem 3.1 and Corollary 3.1). 

Proof. By (4.1) and (4.3), there is nothing to prove for n < q + 1. We set 

en = Un- Un and note that the sequence en = un - Un, enr = uno- Un-i for 

j = 1, . . . q satisfies (2.8). Hence 

Lken = =rn + (ao + kI.),n = fin + (Dn n 

Applying Lemma 1 with p = 2q and (4.3), we obtain 
n 

t2q Il nII2 < Ck (ty2q llIjI2l + 11pj_1 +Ck2q IIvII2. 
j=q 
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Now for tn < T. 
n n 

k (t-|j| 1+|j12q21) < Ckj E |j 11 
2 

j=q j=q 

and 

(4.6) 1w | = || (ao + k.a?)wj _ k = + )w| 

< C (I + k-)/2W | = C0111j III. 

Thus 
n n 

(4.7) tnq IlenII2 < Ck (t2q |I|I|I12 + 1ITj 112qi) +Ck 1j Illjlllw+Ck2q IVII2. 

j=q j=q+2 

We next show that 
n 

(4.8) k ,(t2q Ij 121 + ?Ij Ck2q IIVII2. 
j=q 

Let s > -2q - 1. Using (2.11), we clearly have 

Irj11 l2< C2q-1It 
'j 

lq+lUY)1 dy 

from which it follows that 

(4.9) kti 1l8llil <Ck 2q/ Y2q+l+s IlDq+lU(Y)112 dy 

holds for j > q when s > -2q - 1 and for j > q when s = -2q - 1. 
Let {oj}j and {Aj}J be respectively the eigenfunctions and eigenvalues of the 

operator s. Then, using the eigenfunction expansion of the solution u, we get 

j y2q+l+s IlDq+lu(Y)112 dy 

1=1 
(4.10) 

< | 2q+l+sg A ,2q+2+9e 2,,y (V (g01 )2dy 

00 

< C(v, p)2 = C01v1 12. 
1=1 

Combining (4.9) and (4.10) shows that 
n 

(4.11) k 1: tj2q+l+-g 11'rj12 <C2q IIVI12' 
j=jo 

where jo = q+ 1 when s > -2q - 1 and jo = q when s -2q - 1. Thus, to complete 
the proof of (4.8), it suffices to bound the j = q term in the sum. 

We write rq as in (2.11) with f given by 

u(t) = j (s) ds 
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Then 

(4.12) ktjq _1 < Ck2q (f I 1ut(y)II.dy!+k Iut(tq)I -1) < Ck2" vvvl, 

where the second inequality follows easily from techniques used in deriving (4.10). 
This completes the proof of (4.8). 

Combining (4.8) with (4.7) gives 

n 

(4.13) tnq IIneI12 < Ck2q IIvI12 + Ck 1j iIwjIII2. 
j=q+2 

Let e be a positive constant which is to be specified later. Then, by the argument 
preceding (3.8), there exists a positive 6 such that (4.4) implies 

j.IIIl ' t+l/2 q IIIaq+1UjIII < ctq+l/2{k qI1aq+1ujIII + kqIIIaq+lejIIl} 

< 61+/2 {kqII9aq+1uijIII + CE Illatej- llI} for j > q. 

Thus 
n n n 

k E glsjll~j2 <Ck2q+l E tj2q+1IlIItq+1UjIII2+Cc2kj:tj2q+1lllateji 12. k ~ i~wiii2 ? C2"~1 + i 
j=q+2 j=q+2 j=2 

Using the fact that Vq+1 annihilates polynomials of degree up to q, Taylor's formula 
gives 

2 

t2+l aq+1t 2 <C2tq+l (q+1 t (t - s)qDq+lu(s)1ds 

\j Jtjq .. 1 1 S)11 

< Ck-1 f 82q+1 jDq+1u(8) 2 ds. 
t,-q-1 

Hence, using (4.10), 

n ~~~~~~2 
k E ~t2q+l aq+l+uj < C IIvII2 

j=q+2 

A similar argument, using one less term in the Taylor series gives 

k3 E tj2q+l |atq+lUjll < C lIIVI2 

j=q+2 

Thus, by interpolation, 
n 

k E tj2q+l Ilatq+1UjIII2 < C IIVI12 

j=q+2 

Consequently, 
n n 

(4.14) k 1: IIIlsjII2 < Ck 2q IIVII2 + Cc2k1:t2q+ 
1 

IIIatejl II 2 

j=q+2 j=2 
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To estimate the last term of (4.14), we apply Lemma 2 to {en} and derive 
n n 

k t2q+l 
IllatejII12 < Ck E(t2q+l 1l[ri gI2 + lilTr III,2 ) 

(4.15) jq 
1- 

+ Ck E IIIwjlIjI2 + C j(llei 1112- + k2q Illei 1112)1 

j=q+2 j=O 

where we used (4.6) to estimate the terms involving (Di. Applying (4.11) gives 
n n 

k E t2q+1 Illrj 1112 < k t2q+1 11'rj l2 <C2q IIVI12 . 

j=q+l j=q+l 

As in (4.12), 

kt2q+lllllrqII12 < Ck2q+1 (f| I ut(y)12I dy + klllut(tq)1112) 

< Ck2q (j ;lut(y)jj21 dy + k llUt(tq)ll-2) < Ck2q lIvIl. 

Clearly, by (4.8), 
n n 

k 1: Illrj 111*,2q < k 
1 |rj || -2q- < Ck 2q IIVII2 . 

j=q j=q 

Combining the above estimates with (4.3) gives 

n q-1 n 
k E tj2q+l 1110tei 1112 < k E tj2q+l Illatei 1112 + Ck 2q IIVI12 + Ck 111 IgIIII2 

j=2 j=2 j=q+2 

n 
< Ck 2q IIVI12 + Ck : gIIIjIII2. 

j=q+2 

Together with (4.14) this shows 
n n 

k E IIIwjIII2 < Ck2q IIVlI2 + Ce2k E IIIWjilII2 
j=q+2 j=q+2 

and hence, if e is chosen small enough, 
n 

k 1: IIIWjilI2 < Ck 2q IIVII2. 

j=q+2 

Hence, (4.13) yields 
t2q lien112 ? ck2q 11VI12, 

which completes the proof of the theorem. 
Remark 4.1. The arguments up to (4.13) provide a proof of (4.1) in the case in 

which (3.1) is solved exactly, i.e., wi = 0. 
We shall briefly indicate by an example how initial data can be constructed to 

satisfy (4.3). Take a rational function r(A) satisfying 

(4.16) r(A) = e-A + O(Aq) as A -. 0 
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and 

(4.17) Ir(A)I < 1 for A > 0, r(oo) = 0. 

Set 
U= r(ks()jv, j = O. ... ,q-1. 

Then, by spectral representation we have 

U -UjI 2q = I--q(r(k)j-exp(-jk.,'))vll 
< kq sup IA-q(r(A)i -e-j')I lvII < CkO lvII 

> O 

and 
IIIUj - u~III = 11(1 + k.')112(r(k.,')j - exp(-jk.,'))vll 

< SUp 1(1 + A)1'2 (r(A) -e-jA)I lvII < C IlvII, 
> O 

from which (4.3) follows. 
Note that the above choice of U17... ,Uq-1 corresponds to applying the single 

step operator corresponding to r(ks ) for the first q- 1 steps. The order of accuracy 
defined by (4.16) is only q - 1, which suffices since it is only used a fixed number 
of times (independent of k). For instance, if q = 2, then U1 may be computed by 
the first-order backward Euler method (r(A) = 1/(1 + A)). More generally, we can 
choose r(A) to be the subdiagonal Pad6 approximation of the appropriate order to 
e 

We end this section by applying our above nonsmooth data error estimate to the 
solution of a parabolic equation which has already been discretized with respect to 
the space variables (defined by (2.13)). If Vh = Phv, then the solution of (2.13) 
satisfies (cf. [11]) 

(4.18) I|uh(t) - u(t)II < Chrt-r/2 IlVII for t > 0. 

We can now give the theorem for the fully discrete time stepping scheme. 

THEOREM 4.2. Let q < 6. Consider the incomplete iteration scheme described 
in Section 3 applied to (2.13) with f = 0 and initial data v only in L2(Q). Let Uh 

solve (2.13) with Vh = Phv and assume that the starting procedure is such that 

(4.19) 11 Uj -Uh (j k) ||-2q h + kq III Uj -Uh (jk) III < Ck q IrIVI for j = O,.. .. , q -1. 

Let Uq = Uq and Uq+l = Cq+l. There exists a positive constant 6 such that, if 
M(n) is chosen satisfying 

ICM(n) < btq+1/2 

then 

iiUn - u(t)I < C(hrt-r/2 + kqtj-q) liviI for n > q and tn < T. 

Proof. Using the triangle inequality this follows at once by Theorem 4.1 applied 
to the equation (2.13), together with the estimate (4.18). 

Initial values satisfying (4.19) may now be chosen in the form 

(4.20) U = r(kAh)jPhv for j = 0,... ,q-1, 

with r(A) satisfying (4.16) and (4.17). Clearly, the argument following (4.17) implies 
(4.19). 
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In order to compute the values of U3, j = O.... , q + 2, one must solve algebraic 
systems of the form 

(4.21) (-y + 3Ah)Uj = data 

with appropriate data. Clearly, these equations may be solved iteratively. More- 
over, the cost of iteratively solving a fixed number of problems of the form (4.21) is 
small compared to the computational effort required for the remainder of the time 
stepping scheme. 

5. Proofs of Lemmas 1 and 2. This section gives the proofs of Lemmas 
1 and 2. By eigenfunction expansions of U' and fnf we find that it suffices to 
show that the lemmas hold in the case where H is the set of real numbers. Then 
the operator ,v corresponds to multiplication by a scalar A and the solution Un 
satisfies the recurence 

(5.1) (ao + kA)Un + cU~n-l + ... + aqUn -q fn for n > q, 

where ff = kfn. The solution of (5.1) can be written 

on-q q-1 q- 
(5.2) Un = (cao + kA)-1 fl3 fn-j - i3n-9-j~ej U- Z ) 

j=O s=0 ij=q-s 

where f3j = 0 for j < 0, fo = 1 and f3j = 3j (kA) for j > 0 is defined recursively by 

(5.3) (aO + kA)f3j + a0lj-1 + . + aqf3j-q = 0. 

The following estimates for f3j will be useful in the proof of the Lemmas 1 
and 2. 

LEMMA 5. 1. Let q < 6. There are positive constants c, C and AO such that 

{ Ce-ciA for O < A < Ao, 

1fl3()I ~ Ce-ci for A?>AO. 
Lemma 5.1 was proved in [14], [21]. We include a proof for completeness and 

since similar arguments will be used later in this section. 
Proof. Consider the polynomial 

(5.4) P(r, A) = rq + (airq-j + + aq)/(aO + A). 

The solution of (5.3) can be written 

1 3 T+q-l 
(5 5) 13j(>) ~~~~27ri jrP(r, A) 

where F is a closed path in the complex plane which winds once around each 
root of P(., A). Indeed, the sequence /3j(A) given by (5.5) clearly satisfies (5.3) for 
j > 0. Moreover, a straightforward application of Rouche's Theorem implies that 
the above expression exhibits the correct initial values. 

Let ri(A) denote the ith root of P(r,A) = 0. It is known that P(r) = P(r,O) 
has a simple zero at r = 1 and that the remaining zeros are in the interior of the 
unit disk. Further, for any A > 0, all roots of P(., A) are in the interior of the unit 
disk and tend to zero as A tends to infinity. We order these roots so that rj(A) is a 
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continuous function of A for each 1, and set ri (0) = 1. Elementary manipulations 
give 

ri (A) = 1 - A/P'(1) + O(A2), 

where 

P(r) = aoP(r, 0) = L T( 
j=1 

Clearly, 

(5.6) ri(A) = 1 - A + O(A2) < 1 - A/2 

for A in some neighborhood of the origin. Hence, there exists a positive constant AO 
such that (5.6) holds and ri (A) is a simple root of P(r, A) = 0 for 0 < A < Ao. The 
remaining roots are bounded in absolute value by 1 - 6 for some positive constant 
6 independent of A > 0, and hence we can assume that they are a bounded distance 
away from ri(A) for 0 < A < Ao. 

Let P(r, A) = (r - ri (A))Q(r, A); then 

(5.7) pi3(A) - _(__( _A), + 2|if Q(r A)- dr, 

where 
R Cr, A) - Q(ri (A), A) - Q(,r A) 

kTJ -'(r - ri (A))Q(ri(A)I A) 
In view of the above discussion, it is easily seen that the first term in (5.7) is 
bounded by Ce-ciA for A in (0, Ao]. 

For the second term of (5.7), we note that for each A, R(r, A) is a polynomial in 
r whose roots depend continuously on A. Consequently, the roots of R(., A) can be 
bounded independent of A in the interval [0, Ao], and hence 

IR(, A)I < C for O < A < Ao and 1r < 1. 

Taking F in (5.7) to be the circle centered at the origin of radius 1 - 6/2 implies 
that the second term in (5.7) can be bounded by Ce-6j12. This verifies the lemma 
for 0 < A < A. 

For A > AO, we note that all roots of P(., A) are bounded in absolute value by 
1 - 6 for some positive constant 6 independent of A. The lemma in this case easily 
follows, taking F in (5.5) to be the circle centered at the origin of radius 1 - 6/2. 

LEMMA 5.2. Let q < 6 and fj _ l3(A) = (ao + A)-1lj(A). We then have 

jPgjf(A)I < C(1 + A-P) for j > 0 

and 
00 

A E jPpjf(A)I < C(1 + A>P). 
j=o 

Proof. For A < Ao, 

jPIIjj < CjPIfjl < CjPe-c\j < CA-P 

and 
00 00 00 

A E jPjfj ' CAZI jPe-c-j < CA tPe-c\tdt < CA-P. 
j=O j=O 
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For A > A0, 
jPIIjI < CjPf3jl < CjPe-ci < C 

and 00 00 
A j:P|j| < C(1 + A)-lAj jPe-ci < C, 

j=O j=O 

which proves the lemma. 
Proof of Lemma 1. We are to show that {U'} given by (5.2) satisfies 

n n 

tp (Un)2 + k EtpA(Uj)2 < CkE(tjP,- + A-p-l)(fj)2 

(5-8) 
j~~~~=q j=q 

(5.8)q- q- 1 
+ C (A-P + kV)(Uj)2. 

j=O 

Putting A = kA, (5.8) becomes 
n n 

np(Un)2 + A E jp(Uj)2 < C 1(jPA-1 + A-P-1)(fP)2 

(5-9) 
j=q j=q (5.9) ~~~~~~~~q-l 

+ C (1 + A-P)(Uj)2. 
j=O 

We shall prove the lemma by considering two cases. The first case is when 
U? = .--= Uq-l = 0 and the second is when fj = 0 for j = q, q + 1..... Clearly, 
the proof of the lemma will be complete when we show that (5.9) holds in each of 
these cases. 

For the first case, we have 

n-q 

U p - for n >q. 
j=O 

Using the Schwarz inequality and Lemma 5.2 with p = 0, we obtain 

(n-q A n-q n-q 

Un)2 < 1 ljj | 1 ljl(pn-j)2 < CA-' ljl(pn-j)2. 

ij=0 J j=? j=0 

Now 

(5.10) nP < C(jP + (n - j)P), 

and hence 
n-q 

(5.11) np(Un)2 < CA-1 ZjPfpjI(ffl)2 + 1fl|(n - j)P(ff-j)2} 

j=0 

Applying Lemma 5.2 gives 

n-q 

np(Un)2 < CA-1 (A-P + (n_ j)- )(P -j)2 

j=0 

which is the desired estimate for the first term in (5.9) in this case. 
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We now turn to the second term of (5.9). By summation of (5.11), we obtain 

N N n-q 

A E nP(Un)2 < C E EZ{iPjf | (fi)2 + l31(n-j)P (fl-j)2} 
n=q n=q j=O 

N N-q N N-q 

<C E~n2EjPldj| + c E: nP(fP)2E 1: 1 1 

n=q j=O n=q j=O 

Applying Lemma 5.2 gives 

N N 

A E nP(Un)2 < CA-1 Z(A-P + nP)(ff)2 
n=q n=q 

which verifies (5.9) for the first case. 
We now consider the second case. In addition, assume that U1 = = Uq-1 = 0. 

Then 
n = -f3n-q(YqU0X 

and hence by (5.10) and Lemma 5.2, 

(5.12) np(Un)2 < CnPfq2 (U0)2 < C(1 + (n -q)P)j&-qj(UO) 

< C(1 + A-P)(U0)2. 

By summation of (5.12) we obtain 

N N 

A Z np(Un)2 < CA Z:(1 + (n - q)P)j3-q I(UO)2 
n=q n=q 

< C(1 + A-v)(U0)2. 

This proves (5.9) when U1 = = Uq-K = 0. The arguments verifying (5.9) when 
U' 5$ 0, i = 1, ... ,q - 1, are similar and will not be given. This completes the 
proof of Lemma 1. 

The remainder of this section is devoted to the proof of Lemma 2. We note that 
Eq. (2.2) may be written 

q-1 

E YjotUrn-j +,q/Un = ffn for n > q. 
j=O 

Clearly, 
q-1 

aoP(x, 0) = (x - 1) E _YjXq-j-= (x - 1)Q(x). 
j=O 

Hence, the roots of Q(x) are in the interior of the unit disk. For the proof of 
Lemma 2, we shall use the following lemma which gives estimates for solutions to 
the difference equation with characteristic polynomial Q. 

LEMMA 3. Let q < 6, p > 0, and {h-} be as above. Let {Wn} be the solution 
of the difference equation 

q-1 

-yjwn-j = Fn for n > q. 
j=o 
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Then 
n n q-1 

Z jp(Wj)2 < C , jP(Fi)2 + C Z(Wj)2. 
j=q j=q j=1 

Proof. As in (5.2), 

(n-q q-1 q-1 

W = o (i: jF n-j _ E ( Un-s- j~j| W9 for n > q. 
j=0 s=1 ij=q-s 

Here the suj = 0 for j <0, Oso = 1 and 

'fO/1j + //Uj-1 + + Yq-1/uj-q+l = 0 for j > 1. 

Clearly, lIuj I < Ce-ci (see the proof of Lemma 5.1), from which it obviously follows 
that jPl~ujI < C and 

00 

z jpIljI <? C. 
j=0 

The lemma now follows from the arguments given in the proof of Lemma 1. 
Proof of Lemma 2. We are to show 

n n 
(1 + kA)k E tp(at Uj)2 < Ck(1 + kA)1 (tP + A-p)(fj)2 

j=q j=q 

q-1 

+ C Z((1 + kA) A-P+ + kP-'(1 + kA))(Uj)2, 

j=O 

which can be rewritten (A = kA) 

n n 

I jP(Uj - Uj-1)2 < C(l + A)-2 E(jP + A-P)(fj)2 

(5.13) q-l1 

+ C Z(1 + (1 + A)-2A-P+1)(Uj)2. 
j=O 

Again, the proof of this lemma is reduced to verifying (5.13) for the two cases in 
the proof of Lemma 1. 

We consider the first case, i.e., U0 - = U '-=. From the definition of Q, 
we have 

q-1 q-1 

(1 + A) E - (Un-i - Un-j-1) = fn - AUn + AZ -Y (U j - j-1 

(5.14) j=O j=q 

= fn + AZ jun-j. 
j=O 

By Lemma 3, 
n n n 

I jP(Uj _ Uj-1)2 < C(1 + A)-2 Z jp (i)2 + CA2(1 + A)-2 Z jp(Uj)2. 

j=q j=q j=q 
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By (5.9), we have 

n n 

A 2 
: jp(Uj)2 ? C (jP + A P)(f)2. 

j=q j=q 

Combining the above two inequalities verifies (5.13) for the first case. 
For the second case, once again applying Lemma 3 to (5.14) gives 

n n 
EjP(Uj - Uj-1)2 < CA2(1 + A)-2 ((UO)2 + Z jp(Uj)2 

j=q V j= i 
q-1 

+ C (Uj _ Uj-1)2 
j=1 

n q-1 

< CA 2(1 + A) -2 E jp(Uj)2 + C (Uj)2. 
j=q j=O 

By (5.9), 
n q-1 

A2 EjP(Uj)2 < CA Z(1 + A-P)(Uj)2. 
j=q j=O 

Combining the above two inequalities implies (5.13) for the second case. This 
completes the proof of Lemma 2. 

6. Preconditioning and Numerical Experiments. In this section, we shall 
describe the results of computational experiments illustrating the theory presented 
earlier. To more fully describe the algorithms employed, we first discuss the pre- 
conditioning techniques used to define the iterative process (3.1). We shall also 
demonstrate how these techniques can be used in the computation of the starting 
values defined by (4.20). We then give numerical results for the algorithms applied 
to the smooth as well as nonsmooth initial value problems. 

The iterative approximation Unm for the solution Un of (3.1) will be defined 
by preconditioned conjugate gradients [13]. The preconditioner Bkh is a symmet- 
ric positive definite linear operator defined on Sh which, to be computationally 
effective, should satisfy 

(1) The action of Bkh on arbitrary functions in Sh should be computationally 
less expensive than that of (aO + kAh)-l. 

(2) The operator Bkh should approximately invert (ao + kAh) in the sense that 
there are positive constants ic0, ic1 satisfying 

(6.1) Ico(Bjlvv v) < ((ao + kAh)v, v) < ici(Bj11v, v) for all v E Sh 

with Pci1/KO close to one. 

In our computational examples, we shall use preconditioners which are based on 
multigrid iteration [4] and lead to constants ic0 and ic1 satisfying (6.1) with Pci/Kco < 
C. For additional techniques for the construction of preconditioners see [3]-[9], [13], 
[17], [25]. Note that we require a family of preconditioners since the operators {Bkh} 

are indexed by k and h. 



MULTISTEP BACKWARD DIFFERENCE METHODS 361 

Remark 6.1. We note that the inequalities (6.1) are equivalent to the inequalities 

Kco((ao+kAh)lv,v) < (Bkhv,v) < Kl((ao+kAh)Ylv,v) for all v E Sh. 

It is well known (cf. [23]) that the sequence of iterates {Un'm} defined by 
the preconditioned conjugate gradient method with preconditioner Bkh as above 
satisfies (3.3) with 

,c= X74Zo- 1 

v'74+1 
and co = 2. 

We next consider the problem of computing the starting values Ui given by 
(4.20). In the case of q = 2, the starting value U1 is determined by the backward 
Euler (q = 1) method. We can obviously use the preconditioner Bkh and solve for 
U1 to computer round off. This only involves a number of iterations proportional 
to the number of significant digits on the given machine. Similar techniques are 
used to compute Uq and Uq+1 (for general q) when they are defined to be the exact 
solutions of (3.1). 

We now describe the computation of the starting values for q = 3 and q = 4. 
The starting values for higher q can be developed in a similar manner. As discussed 
earlier, it suffices to use the subdiagonal Pade approximation of order three, i.e., 

1 - r/3 
1 + 2T/3 + r2/6' 

As observed in [1], r can be written 

r(r) = 1-Re + Or 

where ,3 = (1+iV/2)/3 and -y = 1 -iv/2/2. Consequently, Ui = r(kAh)Uj-l can 
be written Ui = U-1 -Re(W), where W is the solution to 

(6.2) (W.X) + k,3A(WX) = k-yA(Ui1,X) for all Xe Sh. 

We next show how the preconditioner Bkh can be used to efficiently solve (6.2). 
We first set up a simple iteration for the solution of (6.2) which involves the inversion 
of the operator A6 = I + k6Ah and subsequently show that A6 can be replaced by 
a preconditioner without significant loss of efficiency. Here, 6 is a positive number 
which we are to provide. Starting from an initial guess WO (e.g., WO = 0) for the 
solution W, we define a sequence of iterates {W1} for I > 0 by 

(6.3) WI = W1-1 + (A6)-'Rl- 

where R1-1 is the residual defined by 

R-1- = kAh(YUj-1 - fW11)- 

The iterative scheme (6.3) can be analyzed by estimating the components of the 
error in terms of the eigenvectors and eigenvalues of Ah. In fact, 

2 2 

(6.4) (A6 )1/2(I - (A6) -1(I + kf3Ah ))V < C6 (A6)1/2V for all V E Sh 

holds for 

Q= sup 1-1 + k3A| 
A\>O0 1?k6A 
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Inequality (6.4) implies that iteration (6.3) converges in the norm (A.,) 1/2 at a 
rate bounded by C1/2. Clearly, Q < 11 _- p612 so, for example, C1/2 < 1/3. 

We now describe a similar iteration replacing A4 by a preconditioner Bkh. We 
assume that (6.1) holds with A4 replacing (aO + kAh) and that 6 is chosen so that 
06 < 1. We replace (6.3) with 

(6.5) WI = W1 + puBkhR11, 

where pu is a positive iteration parameter. Let El = W- W; then 

(BkhE', El) = (BkhE1-, El-l) - 2,uRe((I + k,3Ah)E1-1, El-1) 
+ Pu2 (Bkh(I + kf3Ah)El-1, (I + kf3Ah)E1-1). 

By (6.4), 

(A6Et- , E-1l) + ((A6)-1(I + kf3Ah)E1 - l, (I + k3Ah )E11) 

< CRe((I + k,3Ah)E1-l, El-l) 
holds for C = 2/(1 - 0). Hence (6.1) implies 

(Bk-1E', El) < (Bk-1E1- 
1 

El-1) - 2,Re((I + k,3Ah)E'- , El-1) 
+ Cu2((A6 )1 (I + k,3Ah)E-1-l , (I + k,3Ah)E- 1) 

? (B1E- 1, El-l)- 2t(1 - C0u)Re((I + k,3Ah)E-1, El-1) 
* [1 - cs(l -Cp)] (B- 

1 El- 1 El- 1) 

By choosing ,u small enough (independently of k and h), we can make (1- 

cp(l - CO)) less than one. Hence, each iteration of (6.3) will reduce the error 
by a fixed factor independent of k and h. Thus, the computation of W only re- 
quires a number of iterations proportional to the number of significant digits on 
the given computer. 

Example 1. The first example which we shall consider is the one-dimensional 
problem 

Ut-UXX = f for (x, t) E (0,1) x (0, 1], 

(6.6) u(O,t)=u(1,t)=0 fortE(0,11, 

u(x,0) =0 for xE (0,1). 

The function f is defined so that (6.6) has the solution 

u(x, t) = sin(40t)e-/x2 -/(x1)2 

Accordingly, the smooth data results of this paper apply. 
For this example, we define Sh to be the set of continuous piecewise linear func- 

tions on a uniform mesh of size h (which vanish at x = 0 and x = 1). For these 
subspaces, (3.1) can be solved trivially, and hence the results presented for this ex- 
ample will only illustrate the theory of Section 2. Results for incomplete iteration 
will be given in later examples. Starting values UZ, i = 1, ... , q-1, were generated 
by either the backward Euler method or the (2,1) Pade approximation discussed 
earlier, with appropriate modification to take into account the forcing function f. 

Table 6.1 gives the normalized discrete L2 error E(q, k) as a function of the order 
of time step approximation q and the time step size k. This error is defined by 

(6.7) (rvjI\A _ 1 42 )/2 

(6.7) E(q, k) - 
Z 1)) 

(U2(Xik1)) 
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The sums in (6.7) are over the nodes xi of the subspace, and the time level j 
corresponds to tj = 1. For the results reported in Table 6.1, the mesh parameter h 
was chosen sufficiently small so that the time step error dominated the computation. 
The results illustrate the higher-order convergence suggested by Theorem 2.2. Note 
that for higher-accuracy approximation, the higher-order schemes are always more 
efficient. 

TABLE 6.1 
Discrete L2 error for Example 1. 

k q = 2 q = 3 q = 4 

1/10 1.5 1.4 1.5 
1/20 .59 .48 .41 
1/40 .21 .068 .12 
1/80 .055 .013 .011 

1/160 .013 .0025 .0006 

Example 2. For our second example, we consider approximating the solution of 
the problem 

ut-u = f in x (0,1], 
(6.8) u(x, t) = 0 on X2 x (0,1], 

u(x,0)=0 forxEQ, 

where Q is the unit square in R2. The function f is defined so that (6.8) has the 
solution 

u(x, y, t) = sin (40t)e1/x21/(x1)21/Y21/(Y1)2 

Even though X2 is not smooth, in this case, it is possible to prove results similar 
to those given earlier. 

To define the approximation subspaces, we first break Q into n x n square sub- 
regions and partion each subregion into two triangles by the diagonal connecting 
the bottom left corner with the top right. We define Sh to be the set of continuous 
piecewise linear functions (which vanish on &2) on this mesh and set h = 1/n. We 
shall report results for this scheme which use incomplete iteration approximating 
the solution of (3.1) at each time step. Even though there are 'fast' direct methods 
for the solution of the corresponding system (3.1), we feel that the incomplete iter- 
ation results presented in this example are important since they are representative 
of the type of results expected in more general applications. As in the previous 
example, starting values U', i = 1, . . ., q - 1, were generated by the backward Eu- 
ler method or the (2,1) Pade approximation discussed earlier, with appropriate 
modification to take into account the forcing function f. 

We use preconditioned conjugate gradient to define the iterative approximation 
U',m for the solution of (3.1). The preconditioner Bkh is defined in terms of a 
multigrid iteration which we will not describe here (see for example, [4]). Note, 
however, that Table 6.2 gives the condition number K for the preconditioned sys- 
tem (defined to be the smallest ratio K = x11/K0 satisfying (6.1)). The reported 
condition numbers were for the case q = 2; the condition numbers for q = 3 and 
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TABLE 6.2 
Discrete L2 error for Example 2. 

M(n) = 3 l 

k h q=2 q=3 q=4 K 

1/10 1/16 .89 .93 .99 2.2 
1/20 1/32 .38 .30 .25 2.3 
1/40 1/64 .12 .046 .11 2.4 
1/80 1/64 .028 .033 .032 2.4 
1/160 1/64 .024 .033 .032 2.4 

M(n) = 5 
k h q = 2 q = 3 q = 4 K 

1/40 1/64 .122 .048 .097 2.4 
1/80 1/64 .029 .015 .0086 2.4 
1/160 1/64 .0073 .0053 .0042 2.4 

M(n) = 1 
k h q = 2 q = 3 q = 4 K 

1/40 1/64 .17 .22 .30 2.4 
1/80 1/64 .28 .34 .38 2.4 
1/160 1/64 .99 1.2 1.3 2.4 

q = 4 were almost identical. We also give results as a function of M(n) the num- 
ber of preconditioned conjugate gradient steps in the incomplete iteration for the 
solution of (3.1). For n < q + 1, sufficiently many steps were taken to essentially 
solve the problem. 

Good convergence results were obtained for M(n) = 3 and M(n) = 5. However, 
the results obtained for M(n) = 1 seem to suggest instability. This is in agreement 
with the theory, which requires enough iterations to at least beat a threshold error. 
Three iterations were sufficient in this example. 

Example 3. Our last example will illustrate model computations on a problem 
with nonsmooth initial data. We consider the problem 

ut - 1 Au =0 in Qx (0, 1], 12 
(6.9) u(x, y, t) = 0 on XI x (0,1], 

u(x, y,0) = v(x, y) for x E Q, 

where Q is the unit square in R2 and 

V(x' J) 
1 if 1/4<x, y<3/4, 

( otherwise. 

The solution of (6.9) is given by 
00 

u(x, y, t) = T2 E ctj sin(ix(2i + 1)) sin(iry(2j + 1)) 
i,j=O 

x exp r(_2t (2i + 1)2 + (2j + 1)2 x exp 
~~~12 
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where 
{ (-1)(i/2)(2i + 1)-i if i is even, 

{ (1)(i+l)/2 (2i + 1)-1 otherwise. 

It is easy to see that v E Ha only for a < 1/2. 
For this example, we use the same approximation subspaces as those used in 

Example 2 and again, we use a multigrid preconditioner. For the computations 
given in Table 6.3, we use M(n) = 3 for n > q + 1 and sufficiently many iterations 
to guarantee convergence for lower values of n. The method worked reasonably 
well for large k and h but failed to show improvement for smaller values. This is 
probably because (4.4) was not enforced. 

Table 6.3 gives the discrete L2 error as a function of the time step size k, the 
spatial mesh size h, and the order q. We also include the condition number K - 

Pci/1c0 of the preconditioned system. 

TABLE 6.3 
Discrete L2 error for Example 3 with M(n) = 3 

k h q=2 q=3 q=4 K 

1/10 1/16 .0036 .0079 .010 2.2 
1/20 1/32 .0011 .0024 .0025 2.3 
1/40 1/64 .0010 .0011 .0011 2.4 
1/80 1/64 .00094 .00092 .00090 2.4 

The final table gives convergence results when the number of iterations for the 
solution of (3.1) was given by 

(6.10) M(n) = 3 + lOlog2(tn 1) for n > q + 1. 

This choice of M(n) satisfies (4.4) for some 6. Note that we get improved con- 
vergence results as long as we decrease h. Moreover, for this example, we see no 
improvement with larger q or smaller k with h fixed. This seems to suggest that 
for these runs, the error due to spatial discretization is the dominant term. 

TABLE 6.4 
Discrete L2 error for Example 3 with 

M(n) given by (6.10). 

k h q = 2 q = 3 q = 4 K 

1/10 1/16 .0039 .0080 .010 2.2 
1/20 1/32 .0010 .0021 .0024 2.3 
1/40 1/64 .00034 .00054 .00056 2.4 
1/80 1/64 .00048 .00053 .00054 2.4 
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